Clustering Data Cuaca Ekstrim Indonesia dengan K-Means dan Entropi

Authors

  • Ahmad Chusyairi Universitas Bina Insani

DOI:

https://doi.org/10.52661/j_ict.v5i1.146

Keywords:

bmkg, clustering, entropy, extreme climate, k-means

Abstract

As information technology develops in agriculture, more patterns of database systems are manual or computerized. However, the amount of data available does not always match the knowledge that can be generated. The community really needs weather information regardless of the format if it is reliable and valid. One is to determine local climate patterns. The data collection method uses a document study method, then uses data analysis techniques with a scoring system on rainfall data, maximum temperature, minimum temperature, average temperature, humidity, and wind speed. The K-Means Clustering method is a technique for grouping data. From the analysis carried out, there are 3 classes to cluster the weather levels produced by the entropy test to avoid bias towards non-optimal precision and accuracy. The division of the number of clusters can be captured as a type of potential vulnerability, namely high, medium, and mild where the total of all weather data from all BMKG stations throughout Indonesia is 123 data, 52 of which are classified as areas that have the potential to experience extreme high weather, 31 are classified as areas that experience extreme weather, moderate extreme weather potential, and 40 areas classified as areas with mild extreme weather potential.

References

K. G. Al-Hashedi and P. Magalingam, “Financial fraud detection applying data mining techniques: A comprehensive review from 2009 to 2019,” Computer Science Review, vol. 40. Elsevier Ireland Ltd, May 01, 2021. doi: 10.1016/j.cosrev.2021.100402.
[2] F. Hamami and A. Dahlan, “Klasifikasi Cuaca Provinsi DKI Jakarta Menggunakan Algoritma Random Forest dengan Teknik Oversampling,” 2022.
[3] M. Mananohas, M. D. Bobanto, and Ferdy, “Hubungan Cuaca dan Tanaman Pangan Menggunakan Regresi Linear di Kota Tondano,” Jurnal Matematika dan Aplikasi, 8(2), pp. 169–175, 2019. Available: https://ejournal.unsrat.ac.id/index.php/decartesian
[4] K. Golalipour, E. Akbari, S. S. Hamidi, M. Lee, and R. Enayatifar, “From clustering to clustering ensemble selection: A review,” Engineering Applications of Artificial Intelligence, 104, 2021. doi: 10.1016/j.engappai.2021.104388.
[5] K. P. Sinaga, I. Hussain, and M. S. Yang, “Entropy K-Means Clustering with Feature Reduction under Unknown Number of Clusters,” IEEE Access, 9, pp. 67736–67751, 2021, doi: 10.1109/ACCESS.2021.3077622.
[6] B. Poernomo, R. Dewi, and I. Sari, “Penerapan Data Mining untuk Prakiraan Cuaca di Kota Malang Menggunakan Algoritma Iterativve Dichotomiser Tree (ID3),” JOUTICLA, 3(2), pp. 101–108, 2017.
[7] B. Purvis, Y. Mao, and D. Robinson, “Entropy and its application to urban systems,” Entropy, 21(1), 2019. doi: 10.3390/e21010056.
[8] S. Khairunnisa and M. I. Jambak, “Pengelompokan Cuaca Kota Palembang Menggunakan Algoritma K-Means Clustering Untuk Mengetahui Pola Karakteristik Cuaca,” Jurnal Media Informatika Budidarma, 6(4), p. 2352, 2022. doi: 10.30865/mib.v6i4.4810.
[9] H. Latipa Sari, “Fuzzy Clustering Dalam Pengclusteran Data Curah Hujan Kota Bengkulu dengan Algoritma C-Means,” Jurnal Ilmiah MATRIK, 16(2), pp. 115–124, 2014.
[10] A. Chusyairi and P. R. N. S. Saputra, “Pengelompokan Data Puskesmas Banyuwangi Dalam Pemberian Imunisasi Menggunakan Metode K-Means Clustering,” Telematika, 12(2), pp. 139–148, 2019. doi: 10.35671/telematika.v12i2.848.
[11] D. Abdullah, S. Susilo, A. S. Ahmar, R. Rusli, and R. Hidayat, “The application of K-means clustering for province clustering in Indonesia of the risk of the COVID-19 pandemic based on COVID-19 data,” Qual Quant, 56(3), pp. 1283–1291, 2022, doi: 10.1007/s11135-021-01176-w.
[12] E. Umargono, J. E. Suseno, and V. G. S. K., “K-Means Clustering Optimization using the Elbow Method and Early Centroid Determination Based-on Mean and Median,” in In Proceedings ofthe International Conferences on Information System and Technology (CONRIST 2019), 2020, pp. 234–240. doi: 10.5220/0009908402340240.
[13] E. Umargono, J. E. Suseno, and V. Gunawan, “K-Means Clustering Optimization Using the Elbow Method and Early Centroid Determination Based on Mean and Median Formula,” Advamces in Social Science, Educational and Humanities Research, 474(1), pp. 121–129, 2020.
[14] M. Wei, T. W. S. Chow, and R. H. M. Chan, “Heterogeneous feature subset selection using mutual information-based feature transformation,” Neurocomputing, 168, pp. 706–718, 2015. doi: 10.1016/j.neucom.2015.05.053.
[15] C. R. Malino, M. Arsyad, and P. Palloan, “Analisis Parameter Curah Hujan dan Suhu Udara di Kota Makassar Terkait Fenomena Perubahan Iklim,” Jurnal Sains dan Pendidikn Fisika (JSPF), 17(2), pp. 139–145, 2021.
[16] A. Rahmawati, B. T. T. Pamungkas, and D. Partini, “Pemetaan Tingkatan Cuaca Ekstrim Masing-Masing Kecamatan di Kota Kupang,” Jurnal Geoedusains, 2(1), 2021.

Downloads

Published

2023-12-09

How to Cite

Chusyairi, A. (2023). Clustering Data Cuaca Ekstrim Indonesia dengan K-Means dan Entropi. Journal of Informatics and Communication Technology (JICT), 5(1), 1–10. https://doi.org/10.52661/j_ict.v5i1.146

Issue

Section

Informatika