Pengenalan Angka Bahasa Isyarat dengan Menggunakan Local Directional Pattern dan Klasifikasi K-Nearest Neighbour
Main Article Content
Abstract
Dengan semakin berkembangnya teknologi, diharapkan System Pengenalan Bahasa Isyarat juga semakin berkembang. Sistem Pengenalan Angka Bahasa Isyarat ini dapat dilakukan dengan pembelajaran mesin. Pada penelitian ini dijelaskan tentang sistem pengenalan citra angka Bahasa isyarat dengan menggunakan metode ekstraksi ciri Local Directional Pattern dan Klasifikasi K-Nearest Neighbour. Sistem ini terdiri dari beberapa tahap, yaitu pengumpulan data, pre-processing, ekstraksi ciri dan klasifikasi. Pengujian system ini menggunakan data Turkey Ankara Ayrancı Anadolu High School's Sign Language Digits Dataset sebanyak 2.062 data. Pengujian pada sistem pengenalan angka tulisan tangan ini menunjukkan bahwa metode Local Directional Pattern dapat mengenali angka Bahasa Isyarat hingga mencapai akurasi 88.45% dengan pembagian region pada citra hingga 81 region, dan mengambil 3 tetangga terdekat pada tahap klasifikasi K-Nearest Neighbour. Penelitian ini dilakukan untuk mengetahui parameter terbaik yang digunakan dalam metode Local Directional Pattern dan klasifikasi k-Nearest Neighbor.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
References
[2] M. T. Tukhtasinov, N. Mirzaev and O. M. Narzulloev, "Face recognition on the base of local directional patterns," 2016 Dynamics of Systems, Mechanisms and Machines (Dynamics), 2016, pp. 1-5, doi: 10.1109/Dynamics.2016.7819101.
[3] Cunningham, Padraig & Delany, Sarah. (2007). k-Nearest neighbour classifiers. Mult Classif Syst. 54. 10.1145/3459665.
[4] T. Jabid, M. H. Kabir and O. Chae, "Local Directional Pattern (LDP) – A Robust Image Descriptor for Object Recognition," 2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance, 2010, pp. 482-487, doi: 10.1109/AVSS.2010.17.
[5] Kim, D.-J & Lee, S.-H & Sohn, M.-K. (2013). Face recognition via local directional pattern. International Journal of Security and its Applications. 7. 191-200.
[6] N. Ilmi, W. T. A. Budi and R. K. Nur, "Handwriting digit recognition using local binary pattern variance and K-Nearest Neighbor classification," 2016 4th International Conference on Information and Communication Technology (ICoICT), 2016, pp. 1-5, doi: 10.1109/ICoICT.2016.7571937.
[7] M. A. Kalam, M. N. I. Mondal and B. Ahmed, "Rotation Independent Digit Recognition in Sign Language," 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), 2019, pp. 1-5, doi: 10.1109/ECACE.2019.8679172.